PHYSICAL REVIEW E, VOLUME 64, 036701

Optimization of the time-dependent traveling salesman problem with Monte Carlo methods

Johannes BentnérGunter Bauer, Gustav M. Obermair, and Ingo Morgenstern
Fakulta Physik, UniversitaRegensburg, D-93040 Regensburg, Germany

Johannes Schneider
Physik-Institut, UniversitaZurich-Irchel, Winterthurerstrasse 190, CH-8057 rifih, Switzerland
(Received 5 January 2001; published 8 August 2001

A problem often considered in operations research and computational physics is the traveling salesman
problem, in which a traveling salesperson has to find the shortest closed tour between a certain set of cities.
This problem has been extended to more realistic scenarios, e.g., the “real” traveling salesperson has to take
rush hours into consideration. We will show how this extended problem is treated with physical optimization
algorithms. We will present results for a specific instance of Reinelt’s librapgiBos in which we define a
zone with traffic jams in the afternoon.
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[. INTRODUCTION optimization algorithm has to provide an appropriate accep-
tance criterion. A suitable condition for this is detailed bal-
ance[1],

For many years, physical optimization algorithms have
been used in physics to find the global optimum or at least a m(o)plo—1)=m(T)p(T—0), 3
quasioptimum state of a complex system that cannot be ) N
solved analytically in simulations on a computer. These all-€., the relation of the transition probabilitipsbetweeno
gorithms use an annealing technique, which is motivate@nd 7 is given by the ratio of the probabilities (o) and
from solid state physics: by lowering the temperattlirguc- (7).
Cessive|y, the system loses energy to a |arge extent and is However, some arbitrariness in the exp”Cit choice of the
therefore transferred from a highly energetic unordered contransition probability remains. In most cases the Metropolis
figuration to an ordered solution of low energy. At each tem-Criterion[2] is used, so that a move is accepted according to

perature, a certain number of changes within the configura-

A. Physical optimization algorithms

tion (called movegare performed. The choice of the moves exp( _ A_H) if AH>0
is performed randomly, which is why this class of algorithms ploc—71)= (4)
is part of Monte Carlo simulations. 1 otherwise

Usually, two assumptions are made for the system to be
optimized and for the simulated anneali(®A) algorithm. with AH="H(7) —H(0o).
(1) The system should be classical, i.e., it should obey The question remains of how to cool the system down and
Boltzmann statistics: the probability(o) of a configuration how to determine the start temperatdigand the end tem-
o is given by peratureT .. A universal method for determininfy [3] is by
performing an initial random walk at infinite temperature
(o) = —ex;{ B H(o)) D) (i.e., all moves are acceptedneasuring the occurring en-
Z kgT ergy differences\’H, and specifying the start temperatdrg
of the simulation by

with the energyH (o) of the configurationo, the tempera- Te=10ma{AH}. (5)
ture T, the Boltzmann factokg, and the partition function
The temperature is lowered logarithmically by

7= 2 ex% _ H( T)) . 2 Thew= Tl (6)

kgT
B with a cooling factora (usually 0.8<«<0.999) until the
system freezes at a very low temperature.

kg will be set to 1 throughout this paper and the energy and This approach of finding at least a quasioptimum solution
the temperature will be considered to be dimensionless. ~for a given problem by starting at a random configuration
(2) The system should be brought to a state of equilibriunm@nd cooling the system down can be transferred to economic

at each temperature by a series of move trials for which th@roblems/4]: the costs of a business problem, which have to
be minimized, are identified with the energy function. The

E— temperature is reduced to the role of a control parameter
*FAX: +49-941-943-3196. only. By lowering this parameter, the system is transferred
Email address: johannes.bentner@physik.uni-regensburg.de from a random high-cost to a feasible low-cost solution.
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local search: the algorithm tries to find an improvement in
the neighborhood surrounding the actual configuration. This
neighborhood structure combined with the set of all possible
e . configurations results in the search space. Due to the local
search principle, the energy landscape, which can be con-
structed by plotting the energy values over the search space,
usually shows a relatively slightly curved valley-hill struc-
ture without many zigzags as the energies of neighboring
FIG. 1. Two simple moves that are often used: the Lin-2-Optconfigurations do not'diﬁ‘er very much. For the TSP, it has
changes the direction of a part of the tour and the Lin-3-Opt ex€en shown that using the Lin-2-Opt and the Lin-3-Opt
changes two neighboring parts of the tour. moves, which are shown in Fig. 1, leads to the best results
[7,8]: the Lin-2-Opt move simply reverses the direction of a
There are also some related algorithms, such as threshoR#rt of the tour and the Lin-3-Opt move exchanges two suc-
accepting(TA) [5], which are based on the same annealingceSSive parts of the tour without altering their directions.
principle and which are widely used for solving problems When considering the TSP, there are also some thermody-
from operations research like vehicle routing or productionnamiC observables that are interesting for optimization: first
planning. They differ only in the exact choice of the transi- of all, the thermic expectation value of the ene(@y) shows
tion probability function, which always depends upon a tem-how “cheap” the solutions at the given temperature already
peraturelike control parameter and the energies of the particRre. The specific heat is given as the derivation of?)
pating configurations. TA has been shown to provide resultyith respect tol and can therefore be written as
similar to SA, so we will only give results for SA throughout
this paper.

o VarH) (1)~ (H)?

B. Application to the traveling salesman problem T2 T?

()

The traveling salesman probleSP is given by a set of
N cities or customers through which a traveling salesman haig the system is equilibratedC indicates fluctuations in the
to find the shortest closed to{]. Every customer must be system. The position of its peak is usually called the freezing
visited exactly once. All distanceB(i,j) between the cus- temperaturél; of the system. At this temperature, the main
tomers are known to the traveling salesman. Therefore, thgart of the optimization has already been performed, so that
costs of the TSP are given by the length of the tour, i.e., bythe global patterns of the solution are already given. How-
the sum over the lengths of the edges used. A configuratiogver, the system is still able to find many small improve-
of the TSP is usually written as a permutatiorof the num-  ments and therefore to optimize the problem locally.
bers{1,... N}, such that the Hamiltonian is given by The computational results fgi{) and C are shown in
Fig. 2 for the specific instana®ER127, a problem consisting
of the 127 beer gardens in the area of Augsburg, which can
be found in Reinelt's libraryrspLiBos [9]. The left part of
Fig. 2 shows how the mean energy decreases sigmoidally
(The first separate term is needed to close the ytathe  from the values of the completely random solutions to its
distances can be measured in units of either length or time@ptimum value. Consistent with this, the specific heat the
such that one can study a TSP that looks at minimal distancéght sidg vanishes foiTf —c andT—0 and shows a peak at
or at minimal travel time. If one faces a problem with a T{~900, which is relatively symmetric on a logarithnilc
constant velocity that is exactly the same on all streets, theaxis.
these two problems become equivalent. If the Hamiltonian consists of more than one energy con-

There are many possibilities for creating a new configu-ribution, e.g.;H=\¢Ho+ N1 H1, then a susceptibility; can
ration from the actual one. Mostly, only “small” moves are be defined for each of th&(; in order to measure the re-
used, which do not change a configuration significantly. Duesponse of the system to the force that is exerted upon it by
to the local effects of these moves, this principle is calledtheith term. The susceptibility is defined as

N—-1

H(o)=D(a(N),a(1))+ 21 D(o(i),o(i+1)). (7
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6x10° |
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g | ; FIG. 2. Energy and specific
T oo 2 heat of the normal TSP with SA
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8 9 .
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50 9
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HH;) mines how the velocity decreases in contrast to freely mov-
Xi= = o ) ing traffic. According to another point of view we may also
! retain the velocity at its previous value, whereas the lengths
(For example, think of the Zeeman term and the magneti®f the streets are increased by this factotsually, rush
susceptibility being defined as the partial derivative of thehours appear more frequently in the morning and in the
magnetization with respect to the magnetic field.equilib- ~ €vening. However, we wish to restrict ourselves to the spe-

rium, this susceptibility can also be written as cial case in which traffic jams commence at a given time of
day M and do not terminate until the traveling salesman

Var(H;) arrives home. By using this scenario, we obtain similar re-
Xi=—™” T (100 sults to those in the real case. However, we can show the

effects of introducing rush hours into the TSP more precisely.
In conclusion, we wish to study the following specific prob-
lem: We define a convex region in the city center in which
traffic jams occur on all streets with the starting and the final
The standard TSP is a re|ative|y abstract pr0b|em: amonQOintS inside this region. Relating to this region we define an
many simplifications, the traveling salesman moves with theédge matrixy between the single customers with
same velocity on a certain road at all times. The distance
matrix or the travel time matriXD(i,j)) is given as a con-
stant. However, in reality, the time distance between two p(i,j)= inside the traffic jam area. (12
cities is not at all constant. There are many approaches to
dealing with this problem: in a frequently used approach, the
distanceD(i,j) between the citiesand] is dependent upon Therefore, the objective function can be written as
the position of the corresponding edge in the tour, i.e., a third
dimensiont is introduced in the distance matrix(i,j,t) N
[10,11 so that the distance betweérand j is dependent H(o)=>, (D(a(i),o(i+1))}{1+ n(o(i),a(i+1))(f-1)
upon the number of cities already visited in the tour. There- =1

Il. THE TIME-DEPENDENT TRAVELING SALESMAN
PROBLEM

1 if both customersi and j are

0 otherwise.

fore, the length of the tour is given by X[O(_1(0)+Ci(a)]D), (13)
N-1 .
H(0)=D(o(N).o(1).N)+ S D(o(t),o(t+1).1). with D[ o(N),o(N+1)]=D[o(N),o(1)] and
t=1

) Go)=| 3, DGt + )| -m, s

This ansatz is usually called théme-dependentraveling
salesman problefirDTSP and was introduced by FA42],  \yhich becomes greater than zero if the rush hour has already

who illustrated it with examples from the brewing industry. hegun by the time the traveling salesman arrives at the cus-
Note that the time index does not mark the real time, but o merj. The Heaviside function is defined by

counts only the number of points visited regardless of the
lengths of the distances between these points. However, in = r r
real traffic scenario, the time distance between two cities is middle --------
not dependent upon the previous part of the tour but on the20000 i hu*;;g I |
time of day: in some regions, traffic jams occur at certain
times.

Hence, on some streets the velocity of the traveling sales
man is largely dependent upon the time. Due to the decreas
ing velocity, the time distancd3(i,j) between the cities are 15000
increased. Thus, the distance matrix that contains all dis-
tancesD(i,j) becomes time dependent. This more realistic
problem, which is also referred to as the TDTSP in the lit-
erature[13], is an extension of the classical TSP and also 10000

nondeterministic polynomialNP) complete[14]. NP com- /

plete means for practical purposes that there is no algorithr
that is able to solve this problem in a computing time

teNP, with N being the system size angl a polynomial - Z/ 1
expert.

In realistic problems, one of the most frequently seen situ-
ations is that of traffic jams occurring during rush hours,
especially in the centers of large cities. Usually, the density

of vehicles does not vary very much during these rush hours,
so that we can introduce a constant factowhich deter- FIG. 3. The different traffic jam areas.

5000 10000 15000 20000
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10°

0P | 2000 , 20 A o FIG. 4. Energy and corre-
/ F\ sponding specific heat in the small
traffic jam area. Note that the

energy (W)
8\4
specific heat C

8

100 single peak of the specific heat of
10° the original benchmark problem
% NN splits into three peaks.
105 0 N A
10 10" 18 100 10* 105 10° 107 10® 10° 10" 18 100 10° 165 10° 107 10*
temperature T temperature T
1 if x=0 detour that the traveling salesman has to drive because the

O(x)= (15  system is not yet fully optimized and also because of avoid-
ing the rush hour area after noon, so that we can write the

é—|amiltonian as

0 otherwise.

Equation(13) means that the time lengths of the streets th
traveling salesman uses inside the city center are increased
by the factorf after the beginning of the rush hout1.
[Therefore,D(i,j) denotes the time the traveling salesr.nan|_:,ecausg{0pt is a constant an#t4. and’H;;,e are competing
requires to travel from to j if there is no traffic jam on this  parts in the Hamiltonian, it is very interesting to see how the

H= Hopt +Hae T Hiime - (19

road] The correction term algorithm balances between the two constraidt$ving no
£(o) detours and avoiding rush holirthis is dependent upon the
C()=0( (N 1—0O( ()] s traffic jam factorf.
() =0 (o) (Gi-al ))JD(O‘(I),U(Hl)) In this paper, we intend to concentrate on self-made

16)  benchmark instances that are based onetar127 problem.

We extended thisIER127 problem by adding a region of a
Bertain size in the city center of Augsburg. The different
regions and the nodes of tieeR127 problem are shown in
&}ﬂg. 3. The traveling salesman is supposed to leave a depot
(one of the original points in thBIER127 problem chosen by

us in the city center at 6 a.m. and return to the depot at 6
s.m. if no jams occur and if he uses the shortest possible

is needed to take into account the case in which the travelin
salesman is using a road with=1 when the rush hour
commences. When this occurs, the traveling salesman c
only drive slowly upon the remaining part of this road.

By considering this problem from another point of view,
we could assume that instead of driving upon the roads in th

traffic jam area afterM at a slower velocity, the traveling tour, which has an optimum length of 118 293.8@ngth

salesman could drive upon these roads at the normal Veloc“éfiven inREAL*8 metric). Therefore, one hour corresponds to

v=1 but has to wait for_a certain amount of ti_me upon this_ length of 118 293.52/12 due to his constant velogitfhe
road, so that the total time he spends here is equal to thg) ot of the rush houet was set to noor(12
required time for the road increased by the fadtoFhere- o'clock), which is equivalent to a time length of

fore, we may rewrite the HamiltoniaH as 118 293.52/2= 59146.76. This would make it possible for
_ the traveling salesman to drive without any restrictions until
= +Hy 17 X -
H=Tiengtn Hame 7 noon. After noon he should try to avoid roads that begin and

With Hiengn being the actual tour length aridye being the end in the area defined above.

amount of time he needs due to the slowly moving traffic.

Additionally, we may define the detoty. by ll. COMPUTATIONAL RESULTS

Hiengtr=Hete + Hopy (18) A. Comparison of different traffic jam factors
First of all, the effect of the traffic jam factor and there-

with H,p = 118 293.52 being the optimum tour length for the fore the traffic jam strength on the optimization has to be

original BIER127 problem andHg. being the distance of the discussed. In order to do this, we initialized the problem with

8x10° 25x10°

CHR
510 2.0x10°

2000 1 FIG. 5. The detour that the

traveling salesman has to make in
order to avoid the traffic jams and
its corresponding susceptibility.

For the larger traffic jam factors,

the ordering and clustering effects
can be seen.
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1010 1010

10° 10°
R
5 ) el FIG. 6. Time that the traveling
§ ol x ol salesman spends in the traffic jam
g 02 Z ¢ and corresponding susceptibility.
g / ER The position of the susceptibility
iz 9 . .

§ g 0 peak is linearly dependent upon

102 ﬂ Y the traffic jam factor.

10+ il . . . . 10+ . . . . .

10° 102 100 10* 10° 10 107 10° 10° 100 102 10 10* 165 10 107 10°

temperature T temperature T

the small traffic jam area and traffic jam factdrss1.01, time). This means that, at temperatures lower than the posi-
125,13, 14,15, 1.6, 1.75, 1.8, 2, 10, 50, 100, 200, andon of this peak, the traveling salesman visits the customers
2000. In the following, only the results fdr=1.25, 2, 10, living in the city center in the forenoon, in order to avoid the
100, and 2000 are listed because the results for these fieaffic jam in the center that will occur in the afternoon. The
factors demonstrate all significant changes within the optimifeft and the middle peaks simply result from an ordering and
zation process. By choosirfg=1.01, the original benchmark  cjustering process, which is also well known through other
problem is hardly modified, whereds- 2000 means that the gptimization problems like circuit layou#,15): due to the
traffic comes to a halt after the daytimé in the city center.  gjfferent length scales between the beer gardens inside the
By looking at Fig. 4, we can see at a glance that the stargjty center of Augsburg and the beer gardens in the villages
temperature increases with increasingrhis fact becomes g5r Augsburg, we first find a clustering in those areas where
quite clear if we consider that the' energy differences in thefonger edges are to be found and subsequeatijowerT)
random walk must be greater wheis increased. In fact, the - 5 ordering process inside the city center, where the shorter
start temperatur@; is I!nearly dependent updihwith a f.ac.— edges are located.
tor of ~5.2<10°. At high temperatures, the system is in a = Jpage findings of three different transitions can be clearly
random walk mode, i.e., it can move with virtually no re- erified by taking a look at the partial energies and their
strictions through the energy landscape so that we obtain g,rresponding susceptibilities. Figure 5 shows the detour
flat curve for(’H) at highT. The height of this plateau is also (H4) and its susceptibility. Again, for smalll we find only
linearly dependent upoft (H)s~1.8x1C°f. (The indexs 5 decreases of the energy: a larger one at a temperature of
denotes the starting value at high temperatli@a.lowering  4nnroximately 2000 and a relatively small one at a tempera-
the temperature, all curves decrease until the system freezgfe of 200. Forf =100 andf=2000 we find a third de-
for T<10. In contrast to Fig. 2, the decrease(®f) is N0t eaqe: the mean partial energy decreases from the level at
exactly sigmoidal anymore: the mean energy shows a plateayyich the configurations of the random walk lie to an inter-
at T~185 already for smalf. This leads to an incursion in  agiate level, upon which a restricted random walk is pos-
the peak of the corresponding specific heat, which increasegpje. A restricted random walk means that the rough chro-
along withf. For large traffic jam factor§ we additionally  50gy of the tour is already determined. This third transition

find an extended plateau of the mean energy at medium tems ot seen at all at the susceptibiliy. . The susceptibility
peratures T~10000). Therefore, depending upon the size

v o e ““Xd4e Shows a large peak at the critical temperatdig,e
of the traffic jam factorf, the optimization run can be split "_5000 and a small second peak at 200; the temperatures at

into up to three steps, as sketched in Fig. 4, and which caynich the peaks lie are not dependent upon the sizé of
also be clearly seen in the specific heat, for which up to threﬁowever, the exact height of the peak is not fully dependent
peaks can be counted: the left two peaks are the remainiquon the size off: using values off<10, one can find

parts of the specific heat for=1 (which is equal to the peighis of between 203000 and 210000; working with
original problem without any rush hoyrsvhich is shown in

Fig. 2. Comparing the positions of these peaks, we see that

the left peak is far to the left of the original peak whereas the !

middle peak is shifted only slightly toward the right. On

increasingf, a third peak grows from the right hand side of o8

the middle peak of the specific heat, which migrates to

higher temperatures linearly with increasiingvoreover, the

middle peak becomes lower with increasifighecause at

lower f the right peak does not disappear but superposes on

the middle peak. y
By creating a movie of the actual routes at the different 0 10 1 100 100 107 100 10 e

temperatures during the simulation, we were able to visualize remperatuze T

the evolution from the random start configuration to the op-  FIG. 7. The correlation between the lost time and the detour.

timal tour. In this way we were able to verify that the right The starting correlation is equal for all traffic jam factors. The

peak stems from an optimization process, by which thenhigher the factor, the earlier the correlation disappears. An anticor-

rough chronology of the tour is determind€drdering by relation can be measured for small factors only.

correlation p
o

-0.5
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10° 200

150

FIG. 8. Energy and corre-
sponding specific heat in a traffic
jam problem of sizef=100 in a
comparison of the five different
traffic jam areas.
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10° 10" 102 10°  10* 10° 10® 107 10® 10° 10 10?10 10 10° 10° 107 10®

temperature T temperature T

f=10, one obtains peak heights of between 225000 andhown in Fig. 7. Independently df all curves start at the
235 000. same value of=0.24. Therefore, we have a basic correlation
Due to the different orders of magnitude in the results forbetween the constraints of driving no detour and avoiding
(Hiime) and its corresponding susceptibilipyme , we had to  traffic jams in the system. This fact becomes quite clear if we
plot the results double-logarithmically in Fig. 6. By viewing consider that for random solutions an improvement in the
the left part of Fig. 6, we discover that the starting value oftour length also shortens the time for which the traveling
(Hime) is strongly dependent updinin contrast to(Hge),  salesman has to wait. For smallErthe curves for the vari-
which was exactly constant. Similarly tH)s, (Hime)s  ousf show varied behavior: for smdilwe first see a peak of
=1.8x ,105f for largef. For T—0, a small waiting time re- , in aimost the same temperature range in which the break-
mains if f=1.25 because, in this case, a detour would takgyon of the middle peak of the specific heat occurs. After
more time than this waiting period in the traffic jam. In CON-yna¢ for smallerT, the partial energies are anticorrelated. In
fcrast to this, the traveling salesm_an has to avoid the traff'(fhis temperature range, the two conditions work against each
Jam area for_h.|ghe.r vglues of ‘4”""9 the peaks of the de- other if the system tries to fulfill both constraints simulta-
tour susceptibility in Fig. 5, which result from ordering and neously. This behavior is not seen for larderthere, the
clustering and do not fully depend upérthe peak positions ; ; : . L
of the time susceptibility are shifted toward higher tempera-correlat'on simply .va_mshes .at high temperatures. Obviously,
tures linearly by a factor of 1710° with f. The positions of for largef, t_he th_lmlzanon IS performed separately for.the
the peaks oOfyge and yyme are identical forf=1.5 and the two constraints: First, the traveling salesman has to avoid the
peak ofupe 15 0 the fight of the peak of,for 1>1.5. For 2l M0 B8 & K1 P00 C0e e e s valey
smallf up tof =2, there is a large overlap between the peak?ulfilling this condition [(Hyme)=Const>p—0], then the

of xiime &nd , i.e. the optimization process tries to fulfill P : .
bot)(ﬁln;;%nstra)gg%making n(? detours ar?d wasting no time in op't|m.|zat|on_ due to_the tqur length is started. This result
coincides with the discussion of the overlaps of the suscep-

traffic jams simultaneously. Fof= 10, the overlap vanishes: r]ttibilities and with the graphics in Fig. 5, in which the partial

the system is ordered first according to the time constrai
and then according to the detours. The heights of the peakesne.rgy for the detour breaks down to a lawer value anq re-
. mains nearly constant throughout a large temperature inter-
of xime also depend upoff they increase as 610*f for val
largef. '
The linear dependencies of the peak posifign;y,. and
(Hyme )s @ppear quite clear due to the linear influencé iof
the Hamiltonian. Small variations within the linear behavior In contrast to the last subsection, in which we discussed
can be observed only for smdlland result from the finite the influence of the size of the traffic jam factbon the
system size. Sincécan be seen as a simple scaling factor,system, we now intend to study how the results are affected
the curves fo H;ime ) @andxiime Coincide for largd if we use  if the traffic jam area is either extended or minimized. Here
parametric size3/f and x;ime /f that do not depend updin ~ we wish to discuss results for the different traffic jam areas
Finally, we should look at the correlation betweghie ) shown in Fig. 3, by using a traffic jam factde= 100. We

and (Hyme) during the optimization run. The results are decided on this large factor because we wished to see the

B. Comparison of different traffic jam areas

108

e P P v T
2 A

FIG. 9. The time the traveling
salesman has to spend in the traf-
fic jam and the corresponding sus-
ceptibility. The heights of the sus-
ceptibility peaks vary at the fourth
power with the size of the traffic
jam area.

15x107

1.0x107

energy (Hiime)
/b

05x107 -

susceptibility Xgjme

\ . . 0 N )
100 10t 105 10® 107 10f 100 10" 107 10 10* 105 10® 107 1c®
temperature T temperature T

10° 100 10?
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6x10° ,
small ——
middle —---
5A0° L g I FIG. 10. The detour the travel-
o 3 ing salesman has to take into ac-
YU X . . .
- z count in the different configura-
Toaxo’f 3 tions and its corresponding
1 - ey .
& sl 8 susceptibility. Notice that the de-
¢ 3 tour first increases with increasing
10* size of the traffic jam zone and
0 . N 10 N then decreases again.
10° 10" 102 10° 10 105 10° 107 10® 10° 10" 102 10> 10t 16° 10° 107 10®

temperature T temperature T

effects on the different optimization steps separately. Theot affected significantly by the value df;, as can be
total traffic jam zone contains all cities: the huge 118, the bigclearly seen in Fig. 10.
107, the middle 102, and the small 91. The number of cities Considering the corresponding susceptibilities, we find
inside this traffic jam zone will be denoted Bg throughout  that the height of the peak ¢fye in Fig. 10 decreases with
this section. We will show that some observables havblfhn increasingN; . Furthermore, the peak is shifted to higher
dependency in contrast to the previous section, in which th@ajues ofT (with an exception between the small and middle
dependency was linear with fo zones; however, here we cannot give any quantitative de-
The system energy, which can be seen in Fig. 8, shows ngendencies. In particular, we find that the curve for the total
intermediate plateau for the total and the huge traffic jamygne is completely separated from the other curves. The
areas. This indicates that there is only one constraint thafiher curves show many additional fluctuations and small
dominates the system in the case of lalgje Due to the  oauq on the left leg of the susceptibility, which might be
large size of the traffic jam region, there is no longer ang, .inad by the geometric positions of the single beer gar-

ordering and clustering effect. If the area is decreased the&ens By looking at Fig. 9, we find that the peakygf. is
. .9, o

the intermediate plateau due to the ordering and clusteringIWa s sited at roughly the same temperatur@ (
effect reappears. This behavior can be verified by the specific y gnly P

heat, which displays only the right time ordering peak for the 188164.498 for the total zone, for which the' peaksaf
two largest zones. The height of this peak is roughly giverP"d Xime are at the same temgerathré’he height of the
by 8x 10" ’N{ and is therefore strongly dependent upon theP€ak is roughly given by=0.08Nj, so that we again obtain
number of cities in the traffic jam area. this dependency on the fourth orderf. .

Looking at the starting values of the mean ene(fig. 8 If the traffic jam areas are small, the traveling salesman
and of the partial energy for the waiting tintEig. 9), (*);  has enough choices by which to avoid the traffic jams by
and(Hme)s, We find that they are given byO.ZLNf. This  bypassing the city center without impairing his costs too
behavior can be explained simply if we consider tht greatly. By increasing the S|ze_of the traffic jam area, it be-
increases quadratically with the linear extension of the traffi€@mMes more and more unavoidable for the traveling sales-
jam area and that there amN-z) connections between the .ma”.to t.ake a short detour, wh|ch,' hoyvever, IS ”.‘“‘?h cheaper
N; cities. The linear dimensior]1 of the traffic jam area is an" this situation ¢=100) than waiting in the traffic jams. If

indirect measure of the lengths of these connections, so th N ”’?‘fﬁc jam zone contains nearly all or 3" cities then the
we get an(’)(Nf) behavior all in all.(Of course, this argu- raveling salesman no longer has the option to escape the

i o Glraﬁic jams. In conclusion, an impairment of the total energy
ment is exact only for a large system of randomly distribute . .
results for the three smaller zones in a driven detour and for

cities. We cross checked our assumption with the results for ) L . :
. ‘the huge and total zones in the waiting time. This can be
a few randomly generated TSP examples, for which we again

2 . . . verified in the remaining part of the detour, which is plotted
found theNj dependencies, which are described here for the, Fig. 10 and the remaining part of the time, which is plot-

BIER127 instance). On the other hand, the size (Hae)s IS toq in Fig. 9. Notice that the remaining detour decreases
again for the huge and total zones, because in these cases
there are not enough possibilities for driving a detour, as
there are only 90) cities left in the suburb. In contrast to
this, the waiting time in the cases for these two zones is
much larger than for the smaller ones.
Finally, we wish to have a look at the correlation between
] (Hge) and{Hiime) Which is plotted in Fig. 11. In contrast to
middle —— the results shown in Fig. 7, the start valugs; of the
4l huge - | correlation vary at high temperatures, due to the five differ-
10 0 10F 1 100 10° 10° 10 10° ent configurations of the traffic jam problem. The depen-
rempersture T dency of these start values upon the number of cities in the
FIG. 11. The correlations between the time and the detour. Th&affic jam areaN; is again proportional to the fourth power
starting values of the correlation are dependent upon the syste®f N;. The same dependency is valid for the peak heights.
configuration. The reasons are the same as mentioned abovéHor,

o
»

correlation p
o

I
b4
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(Hime)s, and the peak height of;me . The correlation for — parts, each of them addressing one of the two constraints in
the total zone forms an exception: driving a detour does nothis problem: driving no detour and spending no time in a
help to minimize the waiting time in the traffic jams, becausetraffic jam. We managed to show how the simulated anneal-
no road is free of traffic jams. In this way both constraintsing and threshold accepting algorithms are able to handle
can be optimized at the same time. They are completely cosuch time-dependent problems. Applied to a benchmark
related p= +1) at high temperatures. When freezing effectsproblem based on theiErR127 problem with different traffic
take place, the detour and the waiting time cannot continugam areas, we were able to observe how the two constraints
to fluctuate. In this case, the correlation between the tw®f detour and waiting time work against each other and the
physical values is not defined because zero is divided bgystem finally reaches an optimum.

zero. In this temperature range we set the correlation to zero.
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