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Optimization of the time-dependent traveling salesman problem with Monte Carlo methods
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A problem often considered in operations research and computational physics is the traveling salesman
problem, in which a traveling salesperson has to find the shortest closed tour between a certain set of cities.
This problem has been extended to more realistic scenarios, e.g., the ‘‘real’’ traveling salesperson has to take
rush hours into consideration. We will show how this extended problem is treated with physical optimization
algorithms. We will present results for a specific instance of Reinelt’s libraryTSPLIB95, in which we define a
zone with traffic jams in the afternoon.
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I. INTRODUCTION

A. Physical optimization algorithms

For many years, physical optimization algorithms ha
been used in physics to find the global optimum or at lea
quasioptimum state of a complex system that cannot
solved analytically in simulations on a computer. These
gorithms use an annealing technique, which is motiva
from solid state physics: by lowering the temperatureT suc-
cessively, the system loses energy to a large extent an
therefore transferred from a highly energetic unordered c
figuration to an ordered solution of low energy. At each te
perature, a certain number of changes within the configu
tion ~called moves! are performed. The choice of the mov
is performed randomly, which is why this class of algorithm
is part of Monte Carlo simulations.

Usually, two assumptions are made for the system to
optimized and for the simulated annealing~SA! algorithm.

~1! The system should be classical, i.e., it should ob
Boltzmann statistics: the probabilityp(s) of a configuration
s is given by

p~s!5
1

Z
expS 2

H~s!

kBT D ~1!

with the energyH(s) of the configurations, the tempera-
ture T, the Boltzmann factorkB , and the partition function

Z5(
t

expS 2
H~t!

kBT D . ~2!

kB will be set to 1 throughout this paper and the energy a
the temperature will be considered to be dimensionless.

~2! The system should be brought to a state of equilibri
at each temperature by a series of move trials for which
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optimization algorithm has to provide an appropriate acc
tance criterion. A suitable condition for this is detailed ba
ance@1#,

p~s!p~s→t!5p~t!p~t→s!, ~3!

i.e., the relation of the transition probabilitiesp betweens
and t is given by the ratio of the probabilitiesp(s) and
p(t).

However, some arbitrariness in the explicit choice of t
transition probability remains. In most cases the Metropo
criterion @2# is used, so that a move is accepted according

p~s→t!5H expS 2
DH
T D if DH.0

1 otherwise

~4!

with DH5H(t)2H(s).
The question remains of how to cool the system down a

how to determine the start temperatureTs and the end tem-
peratureTe . A universal method for determiningTs @3# is by
performing an initial random walk at infinite temperatu
~i.e., all moves are accepted!, measuring the occurring en
ergy differencesDH, and specifying the start temperatureTs
of the simulation by

Ts510 max$DH%. ~5!

The temperature is lowered logarithmically by

Tnew5aTold ~6!

with a cooling factora ~usually 0.8<a<0.999) until the
system freezes at a very low temperature.

This approach of finding at least a quasioptimum solut
for a given problem by starting at a random configurati
and cooling the system down can be transferred to econo
problems@4#: the costs of a business problem, which have
be minimized, are identified with the energy function. T
temperature is reduced to the role of a control param
only. By lowering this parameter, the system is transfer
from a random high-cost to a feasible low-cost solution.
©2001 The American Physical Society01-1
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There are also some related algorithms, such as thres
accepting~TA! @5#, which are based on the same anneal
principle and which are widely used for solving problem
from operations research like vehicle routing or product
planning. They differ only in the exact choice of the tran
tion probability function, which always depends upon a te
peraturelike control parameter and the energies of the par
pating configurations. TA has been shown to provide res
similar to SA, so we will only give results for SA throughou
this paper.

B. Application to the traveling salesman problem

The traveling salesman problem~TSP! is given by a set of
N cities or customers through which a traveling salesman
to find the shortest closed tour@6#. Every customer must be
visited exactly once. All distancesD( i , j ) between the cus
tomers are known to the traveling salesman. Therefore,
costs of the TSP are given by the length of the tour, i.e.,
the sum over the lengths of the edges used. A configura
of the TSP is usually written as a permutations of the num-
bers$1, . . . ,N%, such that the Hamiltonian is given by

H~s!5D„s~N!,s~1!…1 (
i 51

N21

D„s~ i !,s~ i 11!…. ~7!

~The first separate term is needed to close the tour.! The
distances can be measured in units of either length or ti
such that one can study a TSP that looks at minimal dista
or at minimal travel time. If one faces a problem with
constant velocity that is exactly the same on all streets, t
these two problems become equivalent.

There are many possibilities for creating a new config
ration from the actual one. Mostly, only ‘‘small’’ moves ar
used, which do not change a configuration significantly. D
to the local effects of these moves, this principle is cal

FIG. 1. Two simple moves that are often used: the Lin-2-O
changes the direction of a part of the tour and the Lin-3-Opt
changes two neighboring parts of the tour.
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local search: the algorithm tries to find an improvement
the neighborhood surrounding the actual configuration. T
neighborhood structure combined with the set of all poss
configurations results in the search space. Due to the l
search principle, the energy landscape, which can be c
structed by plotting the energy values over the search sp
usually shows a relatively slightly curved valley-hill stru
ture without many zigzags as the energies of neighbor
configurations do not differ very much. For the TSP, it h
been shown that using the Lin-2-Opt and the Lin-3-O
moves, which are shown in Fig. 1, leads to the best res
@7,8#: the Lin-2-Opt move simply reverses the direction of
part of the tour and the Lin-3-Opt move exchanges two s
cessive parts of the tour without altering their directions.

When considering the TSP, there are also some thermo
namic observables that are interesting for optimization: fi
of all, the thermic expectation value of the energy^H& shows
how ‘‘cheap’’ the solutions at the given temperature alrea
are. The specific heatC is given as the derivation of̂H&
with respect toT and can therefore be written as

C5
Var~H!

T2
[

^H 2&2^H&2

T2
~8!

if the system is equilibrated.C indicates fluctuations in the
system. The position of its peak is usually called the freez
temperatureTf of the system. At this temperature, the ma
part of the optimization has already been performed, so
the global patterns of the solution are already given. Ho
ever, the system is still able to find many small improv
ments and therefore to optimize the problem locally.

The computational results for̂H& and C are shown in
Fig. 2 for the specific instanceBIER127; a problem consisting
of the 127 beer gardens in the area of Augsburg, which
be found in Reinelt’s libraryTSPLIB95 @9#. The left part of
Fig. 2 shows how the mean energy decreases sigmoid
from the values of the completely random solutions to
optimum value. Consistent with this, the specific heat~on the
right side! vanishes forT→` andT→0 and shows a peak a
Tf'900, which is relatively symmetric on a logarithmicT
axis.

If the Hamiltonian consists of more than one energy co
tribution, e.g.,H5l0H01l1H1, then a susceptibilityx i can
be defined for each of theHi in order to measure the re
sponse of the system to the force that is exerted upon i
the i th term. The susceptibility is defined as

t
-

of
FIG. 2. Energy and specific
heat of the normal TSP with SA
algorithm for the problem of the
127 beer gardens in the area
Augsburg.
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x i52
]^Hi&
]l i

. ~9!

~For example, think of the Zeeman term and the magn
susceptibility being defined as the partial derivative of
magnetization with respect to the magnetic field.! In equilib-
rium, this susceptibility can also be written as

x i5
Var~Hi !

T
. ~10!

II. THE TIME-DEPENDENT TRAVELING SALESMAN
PROBLEM

The standard TSP is a relatively abstract problem: am
many simplifications, the traveling salesman moves with
same velocity on a certain road at all times. The dista
matrix or the travel time matrix„D( i , j )… is given as a con-
stant. However, in reality, the time distance between t
cities is not at all constant. There are many approache
dealing with this problem: in a frequently used approach,
distanceD( i , j ) between the citiesi and j is dependent upon
the position of the corresponding edge in the tour, i.e., a th
dimension t is introduced in the distance matrixD( i , j ,t)
@10,11# so that the distance betweeni and j is dependent
upon the number of cities already visited in the tour. The
fore, the length of the tour is given by

H~s!5D„s~N!,s~1!,N…1 (
t51

N21

D„s~ t !,s~ t11!,t….

~11!

This ansatz is usually called thetime-dependenttraveling
salesman problem~TDTSP! and was introduced by Fox@12#,
who illustrated it with examples from the brewing industr
Note that the time indext does not mark the real time, bu
counts only the number of points visited regardless of
lengths of the distances between these points. However,
real traffic scenario, the time distance between two citie
not dependent upon the previous part of the tour but on
time of day: in some regions, traffic jams occur at cert
times.

Hence, on some streets the velocity of the traveling sa
man is largely dependent upon the time. Due to the decr
ing velocity, the time distancesD( i , j ) between the cities are
increased. Thus, the distance matrix that contains all
tancesD( i , j ) becomes time dependent. This more realis
problem, which is also referred to as the TDTSP in the
erature@13#, is an extension of the classical TSP and a
nondeterministic polynomial~NP! complete@14#. NP com-
plete means for practical purposes that there is no algori
that is able to solve this problem in a computing tim
t}Np, with N being the system size andp a polynomial
expert.

In realistic problems, one of the most frequently seen s
ations is that of traffic jams occurring during rush hou
especially in the centers of large cities. Usually, the den
of vehicles does not vary very much during these rush ho
so that we can introduce a constant factorf, which deter-
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mines how the velocity decreases in contrast to freely m
ing traffic. According to another point of view we may als
retain the velocity at its previous value, whereas the leng
of the streets are increased by this factorf. Usually, rush
hours appear more frequently in the morning and in
evening. However, we wish to restrict ourselves to the s
cial case in which traffic jams commence at a given time
day M and do not terminate until the traveling salesm
arrives home. By using this scenario, we obtain similar
sults to those in the real case. However, we can show
effects of introducing rush hours into the TSP more precis
In conclusion, we wish to study the following specific pro
lem: We define a convex region in the city center in whi
traffic jams occur on all streets with the starting and the fi
points inside this region. Relating to this region we define
edge matrixh between the single customers with

h~ i , j !5H 1 if both customersi and j are

inside the traffic jam area.

0 otherwise .

~12!

Therefore, the objective function can be written as

H~s!5(
i 51

N

„D„s~ i !,s~ i 11!…$11h„s~ i !,s~ i 11!…~ f 21!

3@Q„z i 21~s!…1Ci~s!#%…, ~13!

with D@s(N),s(N11)#5D@s(N),s(1)# and

z i~s!5S (
j 51

i

D„s~ j !,s~ j 11!…D 2M, ~14!

which becomes greater than zero if the rush hour has alre
begun by the time the traveling salesman arrives at the
tomer i. The Heaviside function is defined by

FIG. 3. The different traffic jam areas.
1-3
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FIG. 4. Energy and corre-
sponding specific heat in the sma
traffic jam area. Note that the
single peak of the specific heat o
the original benchmark problem
splits into three peaks.
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Q~x!5H 1 if x>0

0 otherwise.
~15!

Equation~13! means that the time lengths of the streets
traveling salesman uses inside the city center are incre
by the factor f after the beginning of the rush hourM.
@Therefore,D( i , j ) denotes the time the traveling salesm
requires to travel fromi to j if there is no traffic jam on this
road.# The correction term

Ci~s!5Q„z i~s!…@12Q„z i 21~s!…#
z i~s!

D„s~ i !,s~ i 11!…
~16!

is needed to take into account the case in which the trave
salesman is using a road withh51 when the rush hou
commences. When this occurs, the traveling salesman
only drive slowly upon the remaining part of this road.

By considering this problem from another point of vie
we could assume that instead of driving upon the roads in
traffic jam area afterM at a slower velocity, the traveling
salesman could drive upon these roads at the normal velo
v51 but has to wait for a certain amount of time upon th
road, so that the total time he spends here is equal to
required time for the road increased by the factorf. There-
fore, we may rewrite the HamiltonianH as

H5Hlength1Htime ~17!

with Hlength being the actual tour length andHtime being the
amount of time he needs due to the slowly moving traf
Additionally, we may define the detourHde by

Hlength5Hde1Hopt ~18!

with Hopt5118 293.52 being the optimum tour length for th
original BIER127 problem andHde being the distance of the
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detour that the traveling salesman has to drive because
system is not yet fully optimized and also because of avo
ing the rush hour area after noon, so that we can write
Hamiltonian as

H5Hopt1Hde1Htime . ~19!

BecauseHopt is a constant andHde andHtime are competing
parts in the Hamiltonian, it is very interesting to see how t
algorithm balances between the two constraints~driving no
detours and avoiding rush hours!; this is dependent upon th
traffic jam factorf.

In this paper, we intend to concentrate on self-ma
benchmark instances that are based on theBIER127 problem.
We extended thisBIER127 problem by adding a region of a
certain size in the city center of Augsburg. The differe
regions and the nodes of theBIER127 problem are shown in
Fig. 3. The traveling salesman is supposed to leave a d
~one of the original points in theBIER127 problem chosen by
us! in the city center at 6 a.m. and return to the depot a
p.m. if no jams occur and if he uses the shortest poss
tour, which has an optimum length of 118 293.52~length
given inREAL*8 metric!. Therefore, one hour corresponds
a length of 118 293.52/12 due to his constant velocityv. The
commencement of the rush hourM was set to noon~12
o’clock!, which is equivalent to a time length o
118 293.52/25 59146.76. This would make it possible fo
the traveling salesman to drive without any restrictions u
noon. After noon he should try to avoid roads that begin a
end in the area defined above.

III. COMPUTATIONAL RESULTS

A. Comparison of different traffic jam factors

First of all, the effect of the traffic jam factor and ther
fore the traffic jam strength on the optimization has to
discussed. In order to do this, we initialized the problem w
in

.
,
s

FIG. 5. The detour that the
traveling salesman has to make
order to avoid the traffic jams and
its corresponding susceptibility
For the larger traffic jam factors
the ordering and clustering effect
can be seen.
1-4
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FIG. 6. Time that the traveling
salesman spends in the traffic ja
and corresponding susceptibility
The position of the susceptibility
peak is linearly dependent upo
the traffic jam factor.
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the small traffic jam area and traffic jam factorsf 51.01,
1.25, 1.3, 1.4, 1.5, 1.6, 1.75, 1.8, 2, 10, 50, 100, 200,
2000. In the following, only the results forf 51.25, 2, 10,
100, and 2000 are listed because the results for these
factors demonstrate all significant changes within the opti
zation process. By choosingf 51.01, the original benchmar
problem is hardly modified, whereasf 52000 means that the
traffic comes to a halt after the daytimeM in the city center.

By looking at Fig. 4, we can see at a glance that the s
temperature increases with increasingf. This fact becomes
quite clear if we consider that the energy differences in
random walk must be greater whenf is increased. In fact, the
start temperatureTs is linearly dependent uponf with a fac-
tor of '5.23105. At high temperatures, the system is in
random walk mode, i.e., it can move with virtually no r
strictions through the energy landscape so that we obta
flat curve for^H& at highT. The height of this plateau is als
linearly dependent uponf: ^H&s'1.83105f . ~The indexs
denotes the starting value at high temperatures.! On lowering
the temperature, all curves decrease until the system fre
for T<10. In contrast to Fig. 2, the decrease of^H& is not
exactly sigmoidal anymore: the mean energy shows a pla
at T'185 already for smallf. This leads to an incursion in
the peak of the corresponding specific heat, which increa
along with f. For large traffic jam factorsf, we additionally
find an extended plateau of the mean energy at medium
peratures (T'10 000). Therefore, depending upon the s
of the traffic jam factorf, the optimization run can be spl
into up to three steps, as sketched in Fig. 4, and which
also be clearly seen in the specific heat, for which up to th
peaks can be counted: the left two peaks are the remai
parts of the specific heat forf 51 ~which is equal to the
original problem without any rush hours!, which is shown in
Fig. 2. Comparing the positions of these peaks, we see
the left peak is far to the left of the original peak whereas
middle peak is shifted only slightly toward the right. O
increasingf, a third peak grows from the right hand side
the middle peak of the specific heat, which migrates
higher temperatures linearly with increasingf. Moreover, the
middle peak becomes lower with increasingf, because at
lower f the right peak does not disappear but superpose
the middle peak.

By creating a movie of the actual routes at the differe
temperatures during the simulation, we were able to visua
the evolution from the random start configuration to the o
timal tour. In this way we were able to verify that the rig
peak stems from an optimization process, by which
rough chronology of the tour is determined~ordering by
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time!. This means that, at temperatures lower than the p
tion of this peak, the traveling salesman visits the custom
living in the city center in the forenoon, in order to avoid th
traffic jam in the center that will occur in the afternoon. Th
left and the middle peaks simply result from an ordering a
clustering process, which is also well known through oth
optimization problems like circuit layout@4,15#: due to the
different length scales between the beer gardens inside
city center of Augsburg and the beer gardens in the villa
near Augsburg, we first find a clustering in those areas wh
longer edges are to be found and subsequently~at lowerT)
an ordering process inside the city center, where the sho
edges are located.

These findings of three different transitions can be clea
verified by taking a look at the partial energies and th
corresponding susceptibilities. Figure 5 shows the det
^Hde& and its susceptibility. Again, for smallf, we find only
two decreases of the energy: a larger one at a temperatu
approximately 2000 and a relatively small one at a tempe
ture of 200. Forf 5100 and f 52000 we find a third de-
crease: the mean partial energy decreases from the lev
which the configurations of the random walk lie to an inte
mediate level, upon which a restricted random walk is p
sible. A restricted random walk means that the rough ch
nology of the tour is already determined. This third transiti
is not seen at all at the susceptibilityxde . The susceptibility
xde shows a large peak at the critical temperatureTc,de
'2000 and a small second peak at 200; the temperature
which the peaks lie are not dependent upon the size of.
However, the exact height of the peak is not fully depend
upon the size off: using values off ,10, one can find
heights of between 203 000 and 210 000; working w

FIG. 7. The correlation between the lost time and the deto
The starting correlation is equal for all traffic jam factors. T
higher the factor, the earlier the correlation disappears. An anti
relation can be measured for small factors only.
1-5
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FIG. 8. Energy and corre-
sponding specific heat in a traffi
jam problem of sizef 5100 in a
comparison of the five differen
traffic jam areas.
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f >10, one obtains peak heights of between 225 000
235 000.

Due to the different orders of magnitude in the results
^Htime& and its corresponding susceptibilityx time , we had to
plot the results double-logarithmically in Fig. 6. By viewin
the left part of Fig. 6, we discover that the starting value
^Htime& is strongly dependent uponf in contrast to^Hde&,
which was exactly constant. Similarly tôH&s , ^Htime&s
51.83105f for large f. For T→0, a small waiting time re-
mains if f 51.25 because, in this case, a detour would ta
more time than this waiting period in the traffic jam. In co
trast to this, the traveling salesman has to avoid the tra
jam area for higher values off. Unlike the peaks of the de
tour susceptibility in Fig. 5, which result from ordering an
clustering and do not fully depend uponf, the peak positions
of the time susceptibility are shifted toward higher tempe
tures linearly by a factor of 1.73103 with f. The positions of
the peaks ofxde and x time are identical forf 51.5 and the
peak ofx time is to the right of the peak ofxde for f .1.5. For
small f up to f 52, there is a large overlap between the pea
of x time andxde , i.e. the optimization process tries to fulfi
both constraints~making no detours and wasting no time
traffic jams! simultaneously. Forf >10, the overlap vanishes
the system is ordered first according to the time constr
and then according to the detours. The heights of the pe
of x time also depend uponf; they increase as 63104f for
large f.

The linear dependencies of the peak positionTc,time and
^Htime&s appear quite clear due to the linear influence off in
the Hamiltonian. Small variations within the linear behav
can be observed only for smallf and result from the finite
system size. Sincef can be seen as a simple scaling fact
the curves for̂ Htime& andx time coincide for largef if we use
parametric sizesT/ f andx time / f that do not depend uponf.

Finally, we should look at the correlation between^Hde&
and ^Htime& during the optimization run. The results a
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shown in Fig. 7. Independently off, all curves start at the
same value of'0.24. Therefore, we have a basic correlati
between the constraints of driving no detour and avoid
traffic jams in the system. This fact becomes quite clear if
consider that for random solutions an improvement in
tour length also shortens the time for which the traveli
salesman has to wait. For smallerT, the curves for the vari-
ousf show varied behavior: for smallf, we first see a peak o
r in almost the same temperature range in which the bre
down of the middle peak of the specific heat occurs. Af
that, for smallerT, the partial energies are anticorrelated.
this temperature range, the two conditions work against e
other if the system tries to fulfill both constraints simult
neously. This behavior is not seen for largerf; there, the
correlation simply vanishes at high temperatures. Obviou
for large f, the optimization is performed separately for th
two constraints: First, the traveling salesman has to avoid
rush hour area after noon. When the system is caught
valley of the energy landscape, with all states in this val
fulfilling this condition @^Htime&[const⇒r→0#, then the
optimization due to the tour length is started. This res
coincides with the discussion of the overlaps of the susc
tibilities and with the graphics in Fig. 5, in which the parti
energy for the detour breaks down to a lower value and
mains nearly constant throughout a large temperature in
val.

B. Comparison of different traffic jam areas

In contrast to the last subsection, in which we discus
the influence of the size of the traffic jam factorf on the
system, we now intend to study how the results are affec
if the traffic jam area is either extended or minimized. He
we wish to discuss results for the different traffic jam are
shown in Fig. 3, by using a traffic jam factorf 5100. We
decided on this large factor because we wished to see
f-
-

-

FIG. 9. The time the traveling
salesman has to spend in the tra
fic jam and the corresponding sus
ceptibility. The heights of the sus
ceptibility peaks vary at the fourth
power with the size of the traffic
jam area.
1-6
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FIG. 10. The detour the travel
ing salesman has to take into a
count in the different configura-
tions and its corresponding
susceptibility. Notice that the de
tour first increases with increasin
size of the traffic jam zone and
then decreases again.
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effects on the different optimization steps separately. T
total traffic jam zone contains all cities: the huge 118, the
107, the middle 102, and the small 91. The number of ci
inside this traffic jam zone will be denoted asNj throughout
this section. We will show that some observables have anNj

4

dependency in contrast to the previous section, in which
dependency was linear with tof.

The system energy, which can be seen in Fig. 8, show
intermediate plateau for the total and the huge traffic j
areas. This indicates that there is only one constraint
dominates the system in the case of largeNj . Due to the
large size of the traffic jam region, there is no longer
ordering and clustering effect. If the area is decreased t
the intermediate plateau due to the ordering and cluste
effect reappears. This behavior can be verified by the spe
heat, which displays only the right time ordering peak for t
two largest zones. The height of this peak is roughly giv
by 831027Nj

4 and is therefore strongly dependent upon
number of cities in the traffic jam area.

Looking at the starting values of the mean energy~Fig. 8!
and of the partial energy for the waiting time~Fig. 9!, ^H&s

and^Htime&s , we find that they are given by'0.24Nj
4 . This

behavior can be explained simply if we consider thatNj
increases quadratically with the linear extension of the tra
jam area and that there areO(Nj

2) connections between th
Nj cities. The linear dimension of the traffic jam area is
indirect measure of the lengths of these connections, so
we get anO(Nj

4) behavior all in all.~Of course, this argu-
ment is exact only for a large system of randomly distribu
cities. We cross checked our assumption with the results
a few randomly generated TSP examples, for which we ag
found theNj

4 dependencies, which are described here for
BIER127 instance.! On the other hand, the size of^Hde&s is

FIG. 11. The correlations between the time and the detour.
starting values of the correlation are dependent upon the sy
configuration.
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not affected significantly by the value ofNj , as can be
clearly seen in Fig. 10.

Considering the corresponding susceptibilities, we fi
that the height of the peak ofxde in Fig. 10 decreases with
increasingNj . Furthermore, the peak is shifted to high
values ofT ~with an exception between the small and midd
zones!; however, here we cannot give any quantitative d
pendencies. In particular, we find that the curve for the to
zone is completely separated from the other curves.
other curves show many additional fluctuations and sm
peaks on the left leg of the susceptibility, which might
explained by the geometric positions of the single beer g
dens. By looking at Fig. 9, we find that the peak ofx time is
always sited at roughly the same temperatureT
5188 164.498 for the total zone, for which the peaks ofxde

and x time are at the same temperature!. The height of the
peak is roughly given by'0.08Nj

4 , so that we again obtain
this dependency on the fourth order ofNj .

If the traffic jam areas are small, the traveling salesm
has enough choices by which to avoid the traffic jams
bypassing the city center without impairing his costs t
greatly. By increasing the size of the traffic jam area, it b
comes more and more unavoidable for the traveling sa
man to take a short detour, which, however, is much chea
in this situation (f 5100) than waiting in the traffic jams. I
the traffic jam zone contains nearly all or all cities then t
traveling salesman no longer has the option to escape
traffic jams. In conclusion, an impairment of the total ener
results for the three smaller zones in a driven detour and
the huge and total zones in the waiting time. This can
verified in the remaining part of the detour, which is plott
in Fig. 10 and the remaining part of the time, which is plo
ted in Fig. 9. Notice that the remaining detour decrea
again for the huge and total zones, because in these c
there are not enough possibilities for driving a detour,
there are only 9~0! cities left in the suburb. In contrast t
this, the waiting time in the cases for these two zones
much larger than for the smaller ones.

Finally, we wish to have a look at the correlation betwe
^Hde& and^Htime& which is plotted in Fig. 11. In contrast to
the results shown in Fig. 7, the start values^r&s, j of the
correlation vary at high temperatures, due to the five diff
ent configurations of the traffic jam problem. The depe
dency of these start values upon the number of cities in
traffic jam areaNj is again proportional to the fourth powe
of Nj . The same dependency is valid for the peak heig
The reasons are the same as mentioned above for^H&s ,

e
m
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^Htime&s , and the peak height ofx time . The correlation for
the total zone forms an exception: driving a detour does
help to minimize the waiting time in the traffic jams, becau
no road is free of traffic jams. In this way both constrain
can be optimized at the same time. They are completely
related (r511) at high temperatures. When freezing effe
take place, the detour and the waiting time cannot conti
to fluctuate. In this case, the correlation between the
physical values is not defined because zero is divided
zero. In this temperature range we set the correlation to z

IV. CONCLUSION

In our paper, we studied the time-dependent travel
salesman problem as defined by us, by introducing a zon
the city center in which traffic jams occur in the afternoo
We gave a detailed derivation of the HamiltonianH of this
problem and showed howH can be split into two different
.
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parts, each of them addressing one of the two constraint
this problem: driving no detour and spending no time in
traffic jam. We managed to show how the simulated anne
ing and threshold accepting algorithms are able to han
such time-dependent problems. Applied to a benchm
problem based on theBIER127 problem with different traffic
jam areas, we were able to observe how the two constra
of detour and waiting time work against each other and
system finally reaches an optimum.
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